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Abstract

Efficient induction of antigen-specific immunity is achieved by delivering multiple doses of
vaccine formulated with appropriate adjuvants that can harness the benefits of innate immune
mediators. The synthetic glycolipid a-galactosylceramide (a-GalCer) is a potent activator of NKT
cells, a major innate immune mediator cell type effective in inducing maturation of DCs for
efficient presentation of co-administered antigens. However, systemic administration of a-GalCer
results in NKT cell anergy in which the cells are unresponsive to subsequent doses of a-GalCer.
We show here that a-GalCer delivered as an adjuvant by the intranasal route, as opposed to the
intravenous route, enables repeated activation of NKT cells and DCs, resulting in efficient
induction of cellular immune responses to co-administered antigens. We show evidence that after
intranasal delivery, a-GalCer is selectively presented by DCs for the activation of NKT cells, not
B cells. Furthermore, higher levels of PD-1 expression, a potential marker for functional
exhaustion of the NKT cells when a-GalCer is delivered by the intravenous route, are not
observed after intranasal delivery. These results support a mucosal route of delivery for the utility
of a-GalCer as an adjuvant for vaccines, which often requires repeated dosing to achieve durable
protective immunity.
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Introduction

Vaccination is the ideal approach for sustained protection against infectious diseases and
cancer. The administration of multiple doses of candidate vaccines is often necessary to
induce the strongest and most long-lived antigen-specific immune responses. Potent vaccine
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formulations include appropriate adjuvants to increase the immunogenicity of co-
administered antigens and also to help overcome immune tolerance, generally through
harnessing the potential of a variety of innate immune modulators. Systemic administration
of the synthetic glycolipid a-galactosylceramide (a-GalCer) by the intravenous route leads
to CD1d-mediated presentation by APCs which activates NKT cells to induce the
maturation of DCs for more efficient priming of T-cell responses to co-administered
antigens [1]. This has led to the exploration of a.-GalCer as an adjuvant for the induction of
pathogen- and tumor-specific immune responses [2—-4]. However, clinical development
efforts of a-GalCer administration have been hampered by the realization that after the
initial activation, the NKT cells become unresponsive to additional doses of a-GalCer
delivered by the systemic route, a state referred to as anergy, when the NKT cells fail to
produce cytokines and proliferate [5, 6]. We reported earlier that repeated immunization by
the intranasal or oral route using a-GalCer as an adjuvant induced systemic and mucosal
immune responses to co-administered antigens [7]. Here we investigated the mechanism for
the effectiveness of a-GalCer as a mucosal adjuvant by characterizing the NKT cell
responses after delivering primary and booster doses of a-GalCer admixed with the
ovalbumin (OVA) antigen by the intranasal route. We observed activation of NKT cells in
terms of IFN-y production and proliferation after each dose of a-GalCer leading to DC
activation in the lung and lung-draining LNs along with induction of OV A-specific T-cell
responses.

We have previously reported on the effectiveness of a-GalCer as a mucosal adjuvant for
inducing systemic and mucosal immune responses specific to co-administered antigens
delivered two or more times by the intranasal or oral routes [7]. Here, we investigated the
mechanism for the potent mucosal adjuvant activity of a-GalCer by analyzing the kinetics
and functional properties of NKT cells, relative to both priming and boosting by the
intranasal route.

I.n. immunizations employing a-GalCer induce repeated activation and expansion of NKT
cells in the lung

Groups of mice immunized by the intranasal or intravenous route with either OVA and a-
GalCer (a-GalCer group) or OVA alone (control group) were sacrificed on days 1, 3, 5, 6, 8,
and 10 post-immunization (Fig. 1A). A second (booster) immunization was delivered in
each case to additional groups of mice on day 5 and sacrificed on days 6, 8, and 10 (i.e. days
1, 3, and 5 respectively, relative to the second dose). Single-cell suspensions prepared from
spleen and lung tissues were analyzed for functional activation of NKT cells in terms of
IFN-y production (Fig. 1B). We observed a significant increase in the number of IFN-y-
producing NKT cells after intranasal immunization in mice from the a-GalCer group,
relative to that in the control group animals, with peak activity at one day after the first as
well as the second dose. In contrast to these results, mice immunized by the intravenous
route showed a significant increase in the number of IFN-y-producing NKT cells at day one
after only the first dose, and not the second dose (Fig. 1C). These results from mice
immunized by the intravenous route are consistent with the reports in the literature showing
that a single dose of systemic a-GalCer administered either by the intravenous or
intraperitoneal route induced NKT cell anergy, where NKT cells become unresponsive to a
second or booster dose of a-GalCer administered by the same route, in terms of an inability
to produce IFN-vy or proliferate [5, 6, 8, 9].

Along with increased IFN-y production, expansion of NKT cells also occurred in the a-
GalCer group with the peak levels observed at day 5 after the priming immunization by the
intranasal route in the lung (Fig. 1D). Of importance is the observation of a second wave of
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expansion of the NKT cells in the lung between days 6 and 10 (i.e. days 1 and 5
respectively, after the second intranasal immunization) that is significantly higher when
compared with the percentages of NKT cells at the corresponding time point in the mice that
did not receive the second immunization or the control group of mice that received two
doses of OVA only (Fig. 1D). In the mice immunized by the intravenous route with two
doses of a-GalCer, there was a slight increase in the NKT population at day 8, which
corresponds to day 3 post-boost (Fig. 1D); however, this increase was smaller and less
sustained than what was observed in the intranasal group and did not correspond to
increased IFN-y production (Fig. 1C).

The reactivation of NKT cells paralleled an increase in the CD86 expression on CD11c*
DCs (Fig. 2A and B) in the spleen and lung after the second intranasal dose of a-GalCer +
OVA when compared with the OVA control group on day 1 after the second immunization,
a trend similar to that observed for activation of DCs on day 1 after the primary
immunization (Fig. 2A and B). However, CD86 expression was not elevated on CD11c*
DCs after the second intravenous dose of a-GalCer + OVA when compared with the OVA
control group (Fig. 2A and B).

Thus, each dose of a-GalCer adjuvant delivered by the intranasal route resulted in the
activation and expansion of NKT cells with IFN-y producing potential along with an
increase in activated DCs. On the other hand, a second dose of a-GalCer administered by
the intravenous route resulted in only a slight increase in NKT cell proliferation, with no
concurrent increase in IFN-y production by NKT cells and no increase in activated DCs.
Finally, the significant increase in the activation and reactivation of NKT cells and DCs
from the booster immunization by the intranasal route with a-GalCer + OVA also translated
into significant increases in antigen-specific cytotoxic T lymphocyte (CTL) activity and
IFN-y-producing cells after the booster dose, which was not observed after the intravenous
booster immunization (Fig. 2C and D respectively).

Since the primary immunization with a-GalCer + OVA resulted in the expansion of NKT
cells that peaked at day 5 in the lung and did not decrease to base-line levels even at day 10
post-immunization (Fig. 1D), we evaluated whether the second increase in NKT cells is a
consequence of the continued effect of the priming dose of a-GalCer or the effectiveness of
the second dose delivered on day 5. For this, we delayed the booster immunization until day
23 post-priming and characterized NKT cells and DCs in different tissues on days 24, 26,
and 28 (i.e. days 1, 3, and 5 respectively, relative to the booster dose, Fig. 3A). Significant
increases in the percentages of IFN-y-producing NKT cells were observed in the spleen and
lung of mice immunized with the booster dose of a-GalCer + OVA at day 24 (i.e. day 1
after the booster immunization, Fig. 3B) and furthermore, significant expansion of NKT
cells was observed in the lung between days 1 and 5 after the booster immunization (Fig.
3D) compared with that in either the OVA only control group of mice or those that received
only the priming dose of a-GalCer + OVA. We also found CD11c* DCs expressing slightly
increased levels of the CD86 activation marker on day 24 (i.e. day 1 after the booster dose),
when compared with the DCs from mice in the OVA control group (Fig. 3F). These results
from mice that received the priming and boosting doses of a-GalCer + OVA by the
intranasal route 23 days apart (the longer immunization scheme) were similar to those
observed when the two doses were delivered 5 days apart (the shorter immunization
scheme). Thus, regardless of the timing of the second dose, a-GalCer administration by the
intranasal route leads to repeated activation of NKT cells, primarily in the lung. These
results employing a-GalCer as an adjuvant delivered by the intranasal route are in contrast
to those where primary and booster immunizations of a-GalCer + OVA delivered by the
intravenous route 23 days apart. These intravenous immunizations did not result in either
repeated activation or expansion of NKT cells or repeated activation of DCs in any of the
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tissues studied (Fig. 3C, E and G). Thus, our data together with literature reports suggest a
potential influence of the systemic versus mucosal administration of a-GalCer for inducing
anergy in NKT cells.

not B220* cells present a-GalCer in the lung and draining lymph node after i.n.

immunization

We investigated whether the tissue of origin and/or the phenotype of the a-GalCer-
presenting cells influenced the anergy observed for NKT cells after intravenous versus
intranasal route of administration. At one day after intranasal immunization, cells isolated
from the spleen, lung, and several mucosal-draining lymph nodes of mice from either the a-
GalCer group or OVA control group were co-cultured with an NKT cell clone (DN32.D3),
and IL-2 production was assessed as a measure of a-GalCer presentation by cells from the
various tissues [10]. We observed strong activation of the NKT cell clone by cells isolated
from the lung and a lower but sustained level of activation by cells from the mediastinal
lymph nodes (MdLNSs) through day 5 suggesting that lung and MdLNs (lung-draining LNS)
are the primary sites for a-GalCer presentation after intranasal immunization (Fig. 4A).
These results, together with the data showing significantly higher NKT cell activation/
expansion in the lung, described above (Figs. 1-3), support the lung as the major responding
tissue for the a-GalCer adjuvant delivered by the intranasal route.

We further investigated the cellular phenotype presenting a-GalCer in the lung on day 1
after intranasal immunization with a-GalCer + OVA by isolating the CD11c* or B220*
populations (potentially DCs and B cells respectively) for co-culturing with the DN32.D3
NKT cell clone, and analyzing the supernatants for IL-2 production. We observed that only
the CD11c* cells but not B220* cells, from the lungs of mice in the a-GalCer group induced
IL-2 production while neither cell type from lungs of mice immunized with OVA alone
activated the NKT cell clone (Fig. 4B). These data suggest that most likely DCs and not B
cells are involved in selectively presenting a-GalCer to NKT cells in the lung after
intranasal administration of a-GalCer.

Expression of PD-1 on NKT cells after i.v. but not i.n. immunization employing a-GalCer as

an adjuvant

Recent reports in the literature implicate increased PD-1 protein expression on NKT cells for
the observed anergy resulting from administration of a-GalCer by the systemic routes [11-
13]. To test this, NKT cells from different tissues of mice immunized either by the
intravenous or intranasal route with a-GalCer + OVA were examined for surface PD-1
expression by flow cytometry. Consistent with the literature reports, we observed
significantly higher PD-1 levels on NKT cells from spleen (3.7-fold, p = 0.019) and liver
(11.5-fold, p=0.0016) of mice at day 1 after immunization with a-GalCer + OVA by the
intravenous route when compared with that on NKT cells from mice immunized with OVA
alone (Fig. 5A). However, after intranasal immunization PD-1 levels on the NKT cells from
spleen and lung tissues of mice from the a-GalCer group were not similarly increased when
compared with PD-1 expression on NKT cells from mice in the OVA control group (Fig.
5B). Thus, NKT cells in the lungs of mice immunized by the intranasal route using a.-
GalCer as adjuvant exhibit no changes in the PD-1 expression on day one post-
immunization and no signs of functional anergy, in terms of cytokine production and
expansion. These results support the hypothesis that mucosal, as opposed to systemic
administration of a-GalCer, (i.e. intranasal versus intravenous route) may lead to different
consequences for NKT cells in terms of induction of anergy or functional competence in
response to repeated a-GalCer delivery.
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Discussion

The results from this investigation strongly support mucosal delivery as an efficient
approach to harness the adjuvant potential of a-GalCer for priming as well as boosting
cellular immune responses to co-administered immunogens. This is due to the repeated
activation of NKT cells and DCs achieved after intranasal immunization with a-GalCer as
an adjuvant. Meanwhile, systemic immunization by the intravenous route resulted in the
unresponsiveness of the NKT cells to booster doses of a-GalCer, a phenomenon known as
NKT cell anergy. These results are consistent with our earlier published studies which
demonstrated the effectiveness and necessity of a-GalCer for repeated immunization by
mucosal routes for the induction of strong cellular immune responses to the co-administered
antigen [7].

Our studies comparing the intravenous and intranasal routes for delivering a-GalCer
revealed similar Kinetics of activation of NKT cells and DCs in terms of peak levels of IFN-
v production by NKT cells and DC activation at one day after a single immunization and are
consistent with literature reports [5, 8, 14]. The key finding from our investigation is that a
booster immunization employing a-GalCer as an adjuvant by the intravenous and intranasal
routes revealed vastly different effects on NKT cells and DCs. While a single intravenous
administration of a-GalCer, as demonstrated in this manuscript and reported in the
literature, leads NKT cells to become unresponsive in terms of inability to produce
cytokines in response to a booster dose of a-GalCer and also an inability to proliferate [5, 6,
8], our data demonstrates that after booster intranasal administration of a-GalCer, a potent
activation of the NKT cells is observed for a second time in the lung, including IFN-y
production and expansion as well as DC activation. This repeated activation of NKT cells
and DCs occurs regardless of the timing for the administration of the booster dose (i.e. day 5
or 23), suggesting that immunization by the intranasal route is a potential means to allow
repeated dosing of the a-GalCer adjuvant without the induction of NKT cell anergy. A
recent report published during the preparation of this manuscript showed delivery of a-
GalCer by the intradermal route to be effective in avoiding NKT cell anergy, but
mechanistic details are not described [15].

Of note, NKT cell activation and proliferation occurs in multiple tissues after primary
intranasal administration of a-GalCer, but NKT cells are fully re-activated in the lung after
the second intranasal administration of a-GalCer, suggesting that the lung is the major site
of a-GalCer presentation after intranasal administration. This was confirmed by the
observation that a-GalCer presentation to the DN32.D3 NKT cell clone occurs mainly in the
lung and to a lesser extent in the lung-draining lymph node up to 5 days after intranasal
administration. However, it is unclear as to how NKT cells and DCs are activated in more
distal tissues, such as the spleen and liver, after a primary intranasal immunization with a-
GalCer. It is possible that either activated DCs and/or activated NKT cells migrate from the
lung after stimulation with a.-GalCer, or alternatively the cytokine milieu resulting from
NKT cell stimulation with a-GalCer may induce activation of these cell types in other
tissues. In this regard it has been reported that a decrease in NKT cell populations in the
liver coincided with an increase in the blood NKT cell levels after intraperitoneal
immunization with a-GalCer, suggesting potential trafficking of NKT cells [16].

It has been observed that multiple administrations of DCs pulsed ex vivo with a-GalCer, as
opposed to free a-GalCer, do not induce NKT cell anergy [5, 8]. On the other hand, it has
also been shown that injection of B cells pulsed ex vivo with a-GalCer does induce NKT
cell anergy [5, 17]. Here we have shown that after intranasal administration, CD11c* cells,
not B220™* cells, more efficiently present a-GalCer in the lung, suggesting that the intranasal
route of immunization preferentially targets a-GalCer presentation to DCs. Interestingly,
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Hermans et al. [18] showed that presentation of both a-GalCer and peptide antigen by the
same DC was required for the strong activation of antigen-specific T-cell responses.
Futhermore, Ko et al. [14] showed that the responding DC-presenting antigen in the lung-
draining LNs also expresses a CD8a.~ phenotype. This suggests that the DCs presenting a.-
GalCer in the lung should show a similar phenotype, which would be intriguing to pursue in
the future.

In addition to the potential influence of the phenotype of cells presenting a-GalCer to
induce NKT cell anergy, recently it has been reported that expression levels of the cell
surface marker PD-1 on NKT cells may also be an important factor for anergy induction. In
T cells, higher levels of PD-1 expression were observed to be associated with functional
exhaustion resulting from interactions with either of its ligands, PD-L1 or PD-L2, which are
both commonly expressed on APCs including B cells, DCs, and macrophages [19-21]. It
has also been observed that PD-1 expression is up-regulated on the ‘exhausted’ CD8* T
cells in HIV-infected patients and blocking of the PD-1/PD-L1 interaction could rescue the
exhausted T cells in terms of restoring functional properties [22, 23]. Multiple groups have
also shown that PD-1 is up-regulated on NKT cells very early after systemic administration
of a-GalCer, and that blockade of the PD-1/PD-L1 interaction can reverse the
unresponsiveness of the NKT cells [11-13]. We observed that while NKT cells from mice
administered with a-GalCer by the intravenous route exhibited high levels of PD-1
expression at day 1 post-immunization, those in mice where a-GalCer was delivered by the
intranasal route did not (Fig. 5). Furthermore, PD-1 expression on NKT cells coincided with
functional exhaustion and unresponsiveness at 24 h after a second dose of a-GalCer by the
intravenous route but not when a-GalCer was delivered by the intranasal route where NKT
cells were fully functional in terms of IFN-y production and expansion (Figs 1 and 3). Thus,
in addition to the cell type mediating a-GalCer presentation (i.e. DCs versus B cells), the
phenotype of NKT cells in terms of PD-1 expression could be another important factor for
the avoidance of NKT cell anergy resulting from mucosal a-GalCer delivery (e.g. intranasal
route), as opposed to systemic delivery (e.g. intravenous route). These observed differences
between intravenous versus intranasal route of a-GalCer delivery may enable the repeated
activation of NKT cells to aid in promoting DC activation which allows a-GalCer to serve
as an efficient mucosal adjuvant for inducing immune responses to co-administered
antigens. In fact, as shown in Fig. 2 a booster dose of a-GalCer administered by the
intranasal route resulted in a subsequent increase in antigen-specific immune responses,
while a booster dose of a-GalCer administered by the intravenous route did not correspond
to an increase in antigen-specific immune responses.

In addition to the differences in terms of NKT cell anergy induction or the lack thereof, our
investigation revealed several other differences for NKT cell activation after intravenous
versus intranasal administration of a-GalCer. First, the timing of NKT cell activation and
expansion appeared to be prolonged after intranasal administration of a-GalCer because the
peak levels of NKT cell expansion were observed at day 5 post-immunization in the lung,
the main responding tissue for this route of immunization. These results differ from that seen
after the intravenous immunization where the NKT cell population peaked at day 3 in all
tissues tested. In this regard, Fujii et al. [8] reported that intravenous administration of DCs
pulsed ex vivo with a-GalCer, as opposed to free a-GalCer, which is shown to be a
potential approach to avoid anergy to NKT cells, resulted in a prolonged NKT cell response,
as measured by IFN-y production. Second, we observed a decrease in the NKT cell
population in the spleen and liver at day 1 after the priming immunization by the intravenous
route, which is consistent with the literature reports that attribute the decrease in population
to the down-regulation of the TCR as the underlying mechanism, but no such decrease in
TCR was observed for NKT cells in mice that received the priming immunization via the
intranasal route. Incidentally, Fujii et al. [8] reported a phenomenon describing NKT cell
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turnover, a decrease in the NKT cell population on day 1 after a-GalCer administration later
found to be due to TCR down-regulation, after administration of free a-GalCer that was
“less rapid and severe” when DCs pulsed with a-GalCer were administered.

Antigen-specific cellular immune responses were measured after each dose of the a-GalCer
adjuvant and OVA antigen mixture, similar to our previously reported studies with a
different antigen [7]. Both these studies demonstrate that multiple doses of a-GalCer,
administered by the intranasal route, are necessary to induce efficient antigen-specific
cellular immune responses, regardless of the mouse strain used. In addition to the antigen-
specific cellular immune responses, effectiveness of a-GalCer as an adjuvant after intranasal
immunization to induce humoral immune responses, in terms of antigen-specific IgA and
1gG responses has been described in the literature [24] and also observed in other unrelated
studies in our laboratory (data not shown). Thus, our studies provide mechanistic support for
mucosal delivery of a-GalCer adjuvant as an attractive strategy for vaccination regimens.

It is also important to note potential inflammatory effects from the intranasal administration
of a-GalCer. Different mouse model studies revealed that intranasal administration of a.-
GalCer can induce airway infiltration of a combination of eosiniphils, neutrophils, and/or
monocytes [25, 26]. Preliminary studies in our lab showed increase in the percentages of
eosinophils but not neutrophils or monocytes (data not shown). However, clinical trials
performed by Kunii et al. [4] showed that administration of a-GalCer by a nasal sub-
mucosal route was safe.

Overall, this investigation has shown that a-GalCer can be administered by the intranasal
route for primary and booster immunizations to induce cellular immune responses to co-
administered antigens, without inducing NKT cell anergy. This is in striking contrast to a.-
GalCer administration by the intravenous route, in which a single dose leads to NKT cell
anergy and a reduction in the ability of the adjuvant to boost adaptive immune responses to
co-administered antigen. Thus, our data support the intranasal route of immunization as an
attractive route for immunization especially because the ability to deliver multiple doses of
the vaccine is essential for most therapeutic applications against infectious diseases and
cancer.

Materials and methods

Animals

Female C57BI/6 mice aged 6-10 wk were purchased from the National Cancer Institute. All
procedures on the animals were carried out in accordance with institutionally approved
protocols. The animals were housed in microisolator cages and provided with sterile food
and water. The animal facility is fully accredited by the Association for Assessment and
Accreditation of Laboratory Animals Care International. The studies were conducted
according to the National Institute of Health Guidelines on the care and use of Laboratory
Animals.

Cell lines and cell cultures

The cell line EL-4 (C57BL/6, H-2b, Thymoma) was maintained in RPMI complete media
(CM) supplemented with 10% heat-inactivated FBS, 50 U/mL of penicillin—streptomycin
and 50 pg/mL gentamycin.

Peptides and reagents

The synthetic peptide corresponding to the CTL epitopes of chicken ovalbuman
(SIINFEKL) was purchased from American Peptide (Sunnyvale, CA, USA), dissolved in
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dimethyl sulfoxide, DMSO (Sigma, St. Louis, MO, USA) and diluted in 1 x PBS at a final
concentration of 1 mg/mL for cell culture studies. The OVA protein was purchased from
Sigma.

a-GalCer was purchased from Diagnocine LLC (Hackensack, NJ, USA) and dissolved in
DMSO (Sigma) at a concentration of 1mg/mL.

Immunizations

Mice were immunized by the intranasal or intravenous routes 1-2 times at 0 and 5 or 23
days with a mixture of the OVA protein at 100 pg/mouse/dose and the synthetic glycolipid
a-GalCer at 2 pg/mouse/dose. For intranasal immunizations, mice were anaesthetized by
intraperitoneal (i.p.) injection of ketamine—xylaxine mixture, and 10 pl of the adjuvant—
antigen mixture in 1 x PBS was introduced into each nostril as reported earlier [7, 27]. For
intravenous immunizations, 200 pl of the adjuvant—antigen mixture in 1 x PBS was injected
into the tail vein of the mouse. At various time point post-immunization, mice were
sacrificed and perfused and cell suspensions were prepared from the spleen, lung, liver, and
lymph nodes by homogenization or enzymatic dissociation using collagenase type IV
(Sigma). Lymphocytes from liver were further isolated through a percoll (Sigma) gradient of
44 and 67%.

Analyses of antigen-specific cytolytic activity by the ®1Cr release assay

The CTL responses in single-cell suspension from spleens of immunized mice were assayed
as described previously [28]. Briefly, spleen cells were re-stimulated for 5 days with the
OVA peptide (SIINFEKL). These effector cells were tested for cytolytic activity

against ®1Cr-labeled syngeneic EL-4 target cells that were pre-incubated with either medium
alone or OVA peptide. The percentage (%) of specific lysis was calculated using the
following formula: % specific lysis = (experimental release—spontaneous release)/
(maximum release—spontaneous release) x 100, where the spontaneous release represents
the radioactivity obtained when the target cells were incubated in culture medium without
effectors and maximum release represents the radioactivity obtained when the target cells
were lysed with 5% Triton X-100.

IFN-y ELISpot assay

Cells isolated from the lung and MdLN of immunized mice were subjected to ELISpot assay
for enumerating the numbers of antigen-specific IFN-y-producing cells as described earlier
[29] using the reagent kit from BD Biosciences (San Jose, CA, USA). The spots,
representing individual IFN-y-producing cells as spot forming cells (SFC), on the
membrane were enumerated by Zellnet Consulting, New York, NY using the KS-ELISPOT
automatic system (Carl Zeisis, Thornwood, NY, USA). Responses were considered positive
when they were above 10 SFC/well and at least double the number obtained in cells cultured
with medium alone.

Fluorescence-labeled antibodies and flow cytometry

Single-cell suspensions isolated from the various tissues of immunized mice were analyzed
for NKT cells by staining with Pacific Blue-conjugated CD3 (clone 500A2, BD
Biosciences), FITC-conjugated PD-1 (clone J43, eBioscience, San Diego, CA, USA) and the
allophycocyanin-conjugated mouse CD1d tetramer loaded with PBS57 (provided by NIAID
tetramer facility at Emory University, Atlanta, GA, USA). The NKT cells were stained first
with Aqua Live/Dead reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions, and then cells were washed and incubated with the CD1d
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tetramer for 30 min in dark at 37°C. Cells were then incubated with a combination of surface
markers (CD3 and PD-1) for an additional 30 min at 4°C, and then washed and fixed with
Cytofix/Cytoperm Buffer (BD Biosciences for 10 min at 4°C. The percentages of DCs and
their activation status were analyzed by staining for FITC-conjugated CD11b (clone M1/70,
BD Biosciences), allophycocyanin-conjugated CD11c (clone HL3, BD Biosciences), PE-
conjugated CD86 (clone GL1, BD Biosciences), and incubated with a combination of
surface markers for 30 min at 4°C. After staining all cells were analyzed on an LSRII flow
cytometer (BD Biosciences) and the data was analyzed using FlowJo software (Tree Star,
Ashland, OR, USA). For NKT cell analysis, lymphocytes were first gated using the forward
scatter and side scatter plots. Next live cells were gated using side scatter and Aqua plots.
Finally, the NKT cell population was determined by plotting PB-CD3 against the CD1d
tetramer and these cells were analyzed further for surface marker expression and cytokine
production. For DC analysis, lymphocytes were first gated using the forward scatter and side
scatter plots. Next CD11c* cells were gated and then CD86 expression was determined by
histogram plots.

cytokine staining

For intracellular cytokine staining all cells were incubated with GolgiPlug (BD Biosciences)
in CM for 4.5 h before any cellular staining. Cells were stained for surface markers and
fixed as described in the flow cytometry section. Cells were then washed and incubated with
PE-conjugated IFN-y antibody (BD Biosciences) in 1 x Perm/Wash Buffer (clone XMG1.2,
BD Biosciences) for 60 min at 4°C. Cells were then washed two more times in the Perm/
Wash buffer and fixed in Cytofix/Cytoperm buffer (BD Biosciences), and samples were
analyzed on the LSRII flow cytometer as described in the flow cytometry section.

In vivo presentation of a-GalCer

Cells isolated from immunized mice were co-cultured with the NKT cell hybridoma
DN32.D3 for 24 h at a concentration of 1 x 10% lymphocytes to 1 x 10° hybridomas.
Alternatively, single-cell suspensions from the lungs of immunized mice were purified using
MACs beads (Miltenyi Biotec, Bergisch Gladbach, Germany) specific for PE-conjugated
CD11c* or PE-conjugated B220* cells (BD Biosciences) as described in the literature [30].
The purified cells, as a-GalCer-presenting cells, were co-cultured at a concentration of 5 x
10° with 1 x 10° hybridoma cells. The NKT cell activation was assessed in terms of the
release of 1L-2 which was measured by the CTLL assay as described in the literature [31].
Briefly, supernatants were collected from the co-culture, serially diluted, and incubated with
5 x 103 CTLL cells for approximately 40 h at 37°C. Then, 1 uCi of 3H-thymidine (Perkin
Elmer, Waltham, MA, USA) was added for the final 16 h and cells were harvested and
measured for 3H incorporation.
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Figure 1.

Activation and expansion of NKT cells after repeated intranasal administration of a-GalCer.
(A) Mice were immunized by the intranasal or intravenous route with one or two doses of
either OVA alone or admixed with a-GalCer (a-GC + OVA). The second dose was
administered at day 5 after the primary immunization and the mice were sacrificed on days
1, 3,5, 6,8, and 10. (B) Cells isolated from the spleens and lungs or livers were stained with
fluorescently labeled reagents: anti-CD3-PB, NKT tetramer-allophycocyanin, anti-1IFN-y-
PE and Aqua live/dead stain. The gating strategy for enumerating live NKT* CD3* cells
producing IFN-y is shown. (C) The percentages of IFN-y-producing NKT cells between
days 1 and 10 after intranasal or intravenous immunization with OVA alone (OVA) and one
or two doses of a-GalCer + OVA (a-GC + OVA 1D or 2D respectively) are shown. Data
are presented as mean and standard deviations for all the mice tested. *p<0.05 between
groups of mice that were immunized with OVA alone and one dose of a-GalCer + OVA,
¥p<0.05 between mice immunized with OVA alone and two doses of a-GalCer + OVA, and
T p<0.05 between one and two doses of a-GalCer + OVA. (D) The percentages of NKT
tetramer™ cells out of total CD3* cells in the lungs (left) or livers (right) of all three groups
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of mice between days 1 and 10 after intranasal (left) or intravenous (right) immunization are
shown. Significant differences, as determined by Student’s #test (p<0.05), were observed
between days 1 and 3 or 1 and 5 after one dose of a-GalCer + OVA (*). Additionally,
significant differences as determined by Student’s #test (p<0.05), were observed between
days 6 and 8 or days 6 and 10 for the two-dose immunization of a-GalCer + OVA (¥). Data
are shown as the average with standard deviation for three mice and representative of three
experiments.
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Figure 2.

Activation of DCs and antigen-specific immune responses after repeated intranasal
immunization employing a-GalCer as an adjuvant. Mice were immunized by the intranasal
or intravenous route with either OV A alone or admixed with a-GalCer (a-GC + OVA) and
sacrificed 1 day post-immunization. Cells isolated from the spleens and lungs were stained
with fluorescently labeled antibodies: anti-CD11b-FITC, anti-CD11c-allophycocyanin and
anti-CD86-PE. (A) The gating strategy for CD11c* DCs expressing the activation marker
CD86 and a histogram for the percentage of activated CD11c* cells in the spleen in one
mouse each, immunized with OVA alone (filled histogram) or a-GC + OVA (open
histogram) are shown. (B) Fold change of CD86 expression in CD11c* cells from the
spleens and lungs or livers of mice at day 1 after either the 1st or 2nd immunization (day 1
and day 6 respectively) with a-GC + OVA administered by either the intranasal (lung) or
intravenous (liver) route over the values from mice immunized with OVA alone. Data are
presented as mean + SD. (C) Fold change of antigen-specific cytotoxic T lymphocyte
activity in spleen cells from mice immunized by either intranasal (IN) or intravenous routes
(IV), 5 days apart, assessed by the standard chromium release assay using syngeneic EL4
target cells pulsed with the OVA peptide. Data were adjusted for background by subtracting
control values (target cells not pulsed with the OV A peptide) and fold change was calculated
between 2 dose and 1 dose immunization groups at each effector to target ratio tested. The
data are shown as the mean + SD. (D) Fold change in the number of antigen-specific IFN-y-
producing cells. Single-cell suspensions from the lungs of mice immunized by the intranasal
(IN) or the liver of mice immunized by the intravenous route (IV) with one or two doses of
a-GC + OVA administered 5 days apart (1 dose and 2 doses, respectively) were stimulated
and IFN-y measured by ELISpot. Fold changes were calculated between the 1 dose and 2
dose immunization groups after adjustment for medium stimulation and data are shown as
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mean + SD. Data are shown as the average with standard deviation for three mice and
representative of three experiments.
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Figure 3.

Efficient activation and expansion of NKT cells along with activation of DCs after intranasal
but not intravenous booster immunization employing a-GalCer adjuvant. (A) Mice were
immunized by the intranasal or intravenous route with a primary dose of OVA alone (OVA)
or admixed with a-GalCer (a-GC + OVA 1D) and sacrificed 1, 3 and 5 days post-
immunization. A separate group received a booster dose of OVA alone or a-GC + OVA (a-
GC + OVA 2D) at day 23 after the primary immunization followed by the sacrifice of the
mice on days 24, 26, and 28, which are 1, 3 and 5 days after the booster immunization. (B,
C) Cells isolated from the spleen, lung and liver of mice immunized (B) intranasally or (C)
intravenously were stained with fluorescently labeled reagents: anti-CD3-PB, NKT
tetramer-allophycocyanin, anti-IFN-y-PE and Aqua live/dead stain. The live NKT* CD3*
cells producing IFN-y were enumerated for each tissue between days 1-5 and 24-28 post-
immunization and significant differences, as determined by Student’s t-test (p< 0.05),
between the different groups of mice immunized with OVA alone (OVA) and one or two
doses of a-GalCer + OVA (a-GC + OVA 1D or 2D) were marked with * or ¥ respectively.
(D, E) The percentage of NKT tetramer* cells from total CD3* cells from mice immunized
(D) intranasally and (E) intravenously was measured to determine the kinetics of NKT cell
expansion between days 1-5 and 24-28 post-immunization for the OVA and a-GC + OVA
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1D and 2D groups of mice and significant differences between the different groups were
marked with * or ¥ as above. (F, G) The activation status of DCs from mice immunized (F)
intranasally and (G) intravenously was assessed in terms of surface CD86 expression on
CD11c* cells as measured by flow cytometry from spleen, liver on day 1 after the 15t and
2" immunization (days 1 and 24 respectively) and the fold change was calculated between
groups. Data are shown as the average with standard deviation for three mice and
representative of two experiments.

Eur J Immunol. Author manuscript; available in PMC 2013 February 10.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Courtney et al.

A 40 -

IL-2 (U/mL)

351
30+
251
201
154
104

Page 18

| Spleen 0O CLN B
@MLN PP 40+ mCD11c+ Cells
& Lung B MdLN 35= 0B220+ Cells

IL-2 (U/mL)
N
-

15+
104
5-
- : 0- i |t i
OVA Day1 aGC Day 3 aGC Day5 aGC aGC + OVA OVA
Treatment Treatment

Figure 4.

Tissue of origin and cell type for a-GalCer presentation after intranasal immunization. Mice
were immunized by the intranasal route with either OV A alone or admixed with a-GalCer
(a-GC + OVA) and sacrificed on 1, 3 and 5 days post-immunization. (A) Cells isolated from
the spleen, lung, MdLNs, cervical lymph nodes (CLNs), mesenteric lymph nodes (MLNSs),
and Peyer’s patches (PP) were tested for the presentation of a-GalCer by co-culturing with
the NKT cell clone DN32.D3. Culture supernatants were analyzed for IL-2 production by
culturing IL-2-dependent CTLL cells with the supernatants and assessing CTLL cell
proliferation by 3H incorporation. (B) Separate groups of mice were immunized by the
intranasal route with OVA alone or admixed with a-GalCer (a-GC + OVA) and sacrificed
on day 1 post immunization. The lung cells were then stained for either CD11c-PE or B220-
PE and purified by MACs sorting with PE-conjugated MACs beads. The isolated cells
representing CD11c* and B220* populations were separately co-cultured with the NKT cell
clone DN32.D3 and the culture supernatants in each case were analyzed for I1L-2 production.
Data are shown as the average with standard deviation for three mice and representative of
three experiments.
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Figureb5.

Elevated PD-1 expression on NKT cells after intravenous but not intranasal administration
of a-GalCer. Mice were immunized by the intravenous or intranasal route with either OVA
alone (OVA) or admixed with a-GalCer (a-GC + OVA) and sacrificed on day 1 post-
immunization. Cells isolated from the spleen and lung or liver tissues were stained with
fluorescently labeled reagents: anti-CD3-PB, NKT tetramer-allophycocyanin, anti-PD-1-
FITC and Aqua live/dead stain and analyzed by flow cytometry. The live NKT* CD3* cells
expressing PD-1 were enumerated and representative histograms show data for (A) the
spleen and liver tissues from one mouse immunized by the intravenous route or (B) spleen
and lung tissues of one mouse immunized by the intranasal route with either OVA alone
(filled histogram) or a-GC + OVA (open histogram). (C) Fold difference between the OVA
and a-GC + OVA groups of mice for the expression of PD-1 on NKT cells at day 1 after
one immunization by the intravenous (IV) and intranasal (IN) routes. Data are shown as the
average with standard deviation for three mice and representative of three experiments.
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